

128K Word By 8 Bit

CS18LV10245

Revision History

Rev. No.	<u>History</u>	<u>Issue Date</u>
1.0	New Issue	Jun.29, 2005
1.1	Add a new 32L WSON-8x8mm package	Jun.29, 2005
1.2	Revise I _{CCSB1} Typ	Apr. 07, 2006
1.3	Remove WSON	June.12, 2006
1.4	Add I _{CCSB1} Typ 3uA	Jul. 28, 2015
1.5	New package outline added for 32L sTSOP(I)-8x13.4mm	Nov. 15, 2017

128K Word By 8 Bit

CS18LV10245

GENERAL DESCRIPTION	1
FEATURES	1
Product Family	1
PIN CONFIGURATIONS	2
FUNCTIONAL BLOCK DIAGRAM	2
PIN DESCRIPTIONS	3
TRUTH TABLE	3
ABSOLUTE MAXIMUM RATINGS (1)	4
OPERATING RANGE	4
CAPACITANCE (1) (T _A = 25°C, f = 1.0 MHz)	
DC ELECTRICAL CHARACTERISTICS (T _A = 0°C ~70°C, V _{CC} = 5.0V)	5
DATA RETENTION CHARACTERISTICS (T _A = 0°C ~70°C, V _{CC} =5.0V)	6
LOW V _{CC} DATA RETENTION WAVEFORM (1) (/CE1 Controlled)	6
LOW V _{CC} DATA RETENTION WAVEFORM (2) (CE2 Controlled)	7
AC TEST CONDITIONS	7
KEY TO SWITCHING WAVEFORMS	7
AC TEST LOADS AND WAVEFORMS	
AC ELECTRICAL CHARACTERISTICS (T _A = 0° ~70° : V _{CC} =5.0V)	
SWITCHING WAVEFORMS (READ CYCLE)	9
AC ELECTRICAL CHARACTERISTICS (T _A = 0° ~70° : V _{CC} =5.0V)	10
SWITCHING WAVEFORMS (WRITE CYCLE)	
ORDER INFORMATION	13
PACKAGE OUTLINE	14

128K Word By 8 Bit

CS18LV10245

GENERAL DESCRIPTION

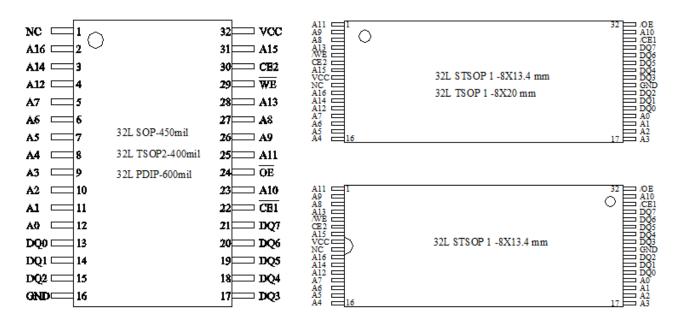
The CS18LV10245 is a high performance; high speed and super low power CMOS Static Random Access Memory organized as 131,072 words by 8bits and operates from a wide range of 4.5 to 5.5V supply voltage. Advanced CMOS technology and circuit techniques provide high speed, super low power features and maximum access time of 55/ 70ns in 5.0V operation. Easy memory expansion is provided by an active LOW chip enable inputs (/CE1, CE2) and active LOW output enable (/OE).

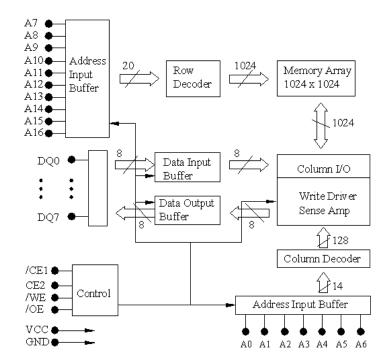
The CS18LV10245 has an automatic power down feature, reducing the power consumption significantly when chip is deselected. The CS18LV10245 is available in JEDEC standard 32-pin sTSOP 1- 8x13.4 mm, TSOP 1- 8x20mm, TSOP 2- 400mil , SOP-450 mil, PDIP- 600 mil.

FEATURES

- Wide operation voltage: 4.5~5.5V
- Ultra-low power consumption : 2mA@1MHz (Max.), V_{CC}=5.0V.
- High speed access time: 55/70ns.
- Automatic power down when chip is deselected.
- Three state outputs and TTL compatible.
- Data retention supplies voltage as low as 2.0V.
- Easy expansion with (/CE1, CE2) and /OE options.

Product Family


Part No.	Operating Temp	Standby (Max) (V _{CC} = 5.0V)	V _{cc} . Range	Speed (ns)	Package Type
					32L SOP
00401740045	0~70°C	10uA			32L STSOP 1
			4.5~5.5	55/ 70	32L TSOP 1
CS18LV10245			4.5~5.5	55/ / 0	32L TSOP 2
	-40~85°C	15uA			32L PDIP
					Dice


128K Word By 8 Bit

CS18LV10245

PIN CONFIGURATIONS

UNCTIONAL BLOCK DIAGRAM

128K Word By 8 Bit

CS18LV10245

PIN DESCRIPTIONS

Name	Type	Function
A0 – A16	Input	Address inputs for selecting one of the 131,072 x 8 bit words in the RAM
		/CE1 is active LOW and CE2 is active HIGH. Both chip enables must be
		active when data read from or write to the device. If either chip enable is
/CE1, CE2	Input	not active, the device is deselected and in a standby power down mode.
		The DQ pins will be in high impedance state when the device is
		deselected.
		The Write enable input is active LOW. It controls read and write
/WE	Input	operations. With the chip selected, when /WE is HIGH and /OE is LOW,
/ V V L	iliput	output data will be present on the DQ pins, when /WE is LOW, the data
		present on the DQ pins will be written into the selected memory location.
		The output enable input is active LOW. If the output enable is active while
/OE	Input	the chip is selected and the write enable is inactive, data will be present
/OL	iliput	on the DQ pins and they will be enabled. The DQ pins will be in the high
		impedance state when /OE is inactive.
DQ0~DQ7	I/O	These 8 bi-directional ports are used to read data from or write data into
DQ0~DQ1	1/0	the RAM.
Vcc	Power	Power Supply
Gnd	Power	Ground
NC		No connection

TRUTH TABLE

MODE	/CE1	CE2	/WE	/OE	DQ0~7	Vcc
						Current
Standby	Н	Х	X	X	High Z	I _{CCSB} ,
Ctanaby	Х	L	Х	Х	I light Z	I _{CCSB1}
Output Disable	L	Н	Н	Н	High Z	I _{CC}
Read	L	Н	Н	L	D _{OUT}	I _{CC}
Write	Ĺ	Н	L	X	D _{IN}	I _{CC}

128K Word By 8 Bit

CS18LV10245

ABSOLUTE MAXIMUM RATINGS (1)

Symbol	Parameter	Rating	Unit
V_{TERM}	Terminal Voltage with Respect to GND	-0.5 to Vcc+0.5	V
T _{BIAS}	Temperature Under Bias	-40 to +125	ОС
T _{STG}	Storage Temperature	-60 to +150	οС
P _T	Power Dissipation	1.0	W
I _{OUT}	DC Output Current	20	mA

^{1.} Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

OPERATING RANGE

Range	Ambient Temperature	Vcc
Commercial	0~70°C	4.5~5.5V
Industrial	-40~85°C	4.5~5.5V

^{1.} Overshoot: V_{CC} +2.0V in case of pulse width \leq 20ns.

CAPACITANCE (1) (T_A = 25℃, f = 1.0 MHz)

Symbol	Parameter	Conditions	MAX.	Unit
C _{IN}	Input Capacitance	V _{IN} =0V	6	pF
C _{DQ}	Input/Output Capacitance	V _{I/O} =0V	8	pF

^{1.} This parameter is guaranteed and not tested.

4

^{2.} Undershoot: - 2.0V in case of pulse width ≤20ns.

^{3.} Overshoot and undershoot are sampled, not 100% tested.

128K Word By 8 Bit

CS18LV10245

DC ELECTRICAL CHARACTERISTICS (T_A = 0°C ~70°C, V_{CC} = 5.0V)

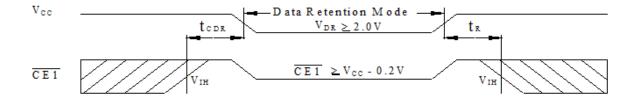
Name	Parameter	Test Condition	MIN	TYP ⁽¹⁾	MAX	Unit
V _{IL}	Guaranteed Input Low Voltage ⁽²⁾	Vcc=5.0V	-0.5		0.8	V
V _{IH}	Guaranteed Input High Voltage ⁽²⁾	Vcc=5.0V	2.2		Vcc+0.5	V
I _{IL}	Input Leakage Current	V_{CC} =MAX, V_{IN} =0 to V_{CC}	-1		1	uA
I _{OL}	Output Leakage Current	V_{CC} =MAX, /CE1= V_{Ih} , or CE2= V_{IL} , or /OE= $V_{Ih, or}$ /WE= V_{IC}	-1		1	uA
V _{OL}	Output Low Voltage	V _{CC} =MAX, I _{OL} =2.1mA			0.4	V
V _{OH}	Output High Voltage	V_{CC} =MIN, I_{OH} = -1.0mA	2.4			V
I _{CC}	Operating Power Supply Current	/CE1= V_{IL} , I_{DQ} =0mA, F= F_{MAX} =1/ t_{RC}			30	mA
I _{CCSB}	TTL Standby Supply	/CE1=V _{IH} , I _{DQ} =0mA,			1.0	mA
		/CE1≧V _{CC} -0.2V, CE2≦				
I _{CCSB1}	CMOS Standby Current	0.2V, V _{IN} ≧V _{CC} -0.2V or		3	10	uA
		V _{IN} ≦0.2V,				

^{1.} Typical characteristics are at $T_A = 25 \, \text{C}$.

3. $Fmax = 1/t_{RC}$

^{2.} These are absolute values with respect to device ground and all overshoots due to system or tester notice are included.

128K Word By 8 Bit

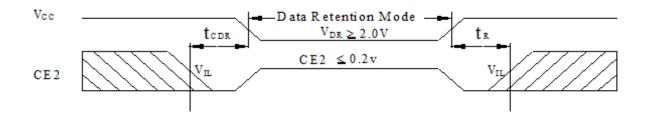

CS18LV10245

DATA RETENTION CHARACTERISTICS (T_A = 0° ~70°, V_{CC} =5.0V)

Name	Parameter	Test Condition	MIN	TYP ⁽¹⁾	MAX	Unit
V _{DR}	V _{CC} for Data Retention	/CE1 \ge V _{CC} -0.2V, V _{IN} \ge V _{CC} -0.2V or V _{IN} \le 0.2V	2.0			>
I _{CCDR}	Data Retention Current	VCC=2.0V, /CE1≧V _{CC} -0.2V, V _{IN} ≧V _{CC} -0.2V or V _{IN} ≦0.2V		0.5	5	uA
T _{CDR}	Chip Deselect to Data Retention Time	Refer to Retention Waveform	0			ns
t _R	Operation Recovery Time	italai to italainion wavaloim	t _{RC} (2)			ns

^{1.} $TA = 25 \, \mathcal{C}$

LOW V_{CC} DATA RETENTION WAVEFORM (1) (/CE1 Controlled)


^{2.} t_{RC}= .Read Cycle Time

128K Word By 8 Bit

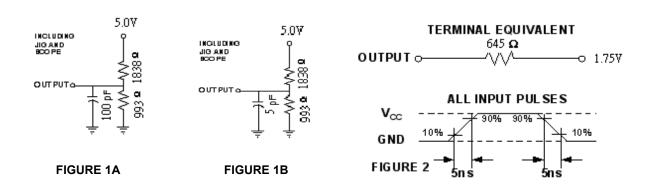
CS18LV10245

LOW V_{CC} DATA RETENTION WAVEFORM (2) (CE2 Controlled)

AC TEST CONDITIONS

Input Pulse Levels	Vcc/0V		
Input Rise and Fall	5ns		
Times	ons		
Input and Output			
Timing Reference	0.5Vcc		
Level			
Output Lood	See FIGURE		
Output Load	1A and 1B		

KEY TO SWITCHING WAVEFORMS


WAVEFORMS	INPUTS	OUTPUTS
	MUST BE STEADY	MUST BE STEADY
	MAY CHANGE FROM H TO L	WILL BE CHANGE FROM H TO L
	MAY CHANGE FROM L TO H	WILL BE CHANGE FROM L TO H
	DON'T CARE ANY CHANGE PERMITTED	CHANGE STATE UNKNOWN
>>> ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ←	DOES NOT APPLY	CENTER LINE IS HIGH IMPEDANCE OFF STATE

128K Word By 8 Bit

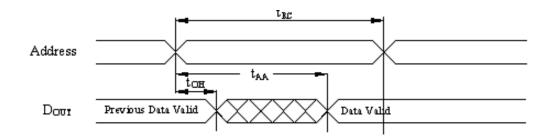
CS18LV10245

AC TEST LOADS AND WAVEFORMS

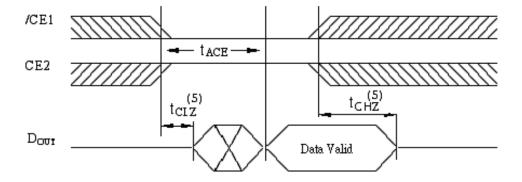
AC ELECTRICAL CHARACTERISTICS (T_A = 0°C ~70°C; V_{CC}=5.0V)

< READ CYCLE >

JEDEC	Cumbal	Description	-5	55	-7	70	Unit
Name	Symbol	Description	MIN	MAX	MIN	MAX	Unit
t _{AVAX}	t _{RC}	Read Cycle Time	55		70		ns
t _{AVQV}	t _{AA}	Address Access Time		55		70	ns
t _{ELQV}	t _{ACE}	Chip Select Access Time		55		70	ns
t _{GLQV}	t _{OE}	Output Enable to Output Valid		25		35	ns
t _{ELQX}	t _{CLZ} ⁽⁵⁾	Chip Select to Output Low Z	10		10		ns
t _{GLQX}	t _{OLZ} ⁽⁵⁾	Output Enable to Output in Low Z	5		5		ns
t _{EHQZ}	t _{CHZ} ⁽⁵⁾	Chip Deselect to Output in High Z	0	20	0	25	ns
t _{GHQZ}	t _{OHZ} ⁽⁵⁾	Output Disable to Output in High Z	0	20	0	25	ns


128K Word By 8 Bit

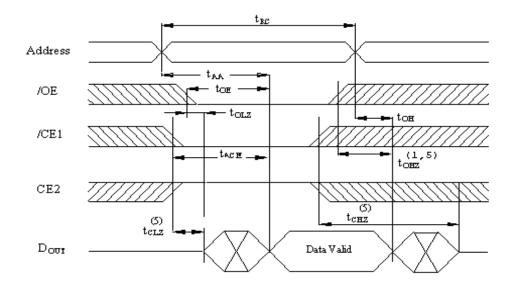
CS18LV10245


t _{AXOX} t _{Ot}	Address Change to Out Disable	10	10		ns	
-----------------------------------	----------------------------------	----	----	--	----	--

SWITCHING WAVEFORMS (READ CYCLE)

READ CYCLE 1 [1, 2, 4]

READ CYCLE 2 [1, 3, 4]



128K Word By 8 Bit

CS18LV10245

READ CYCLE 3 [1, 4]

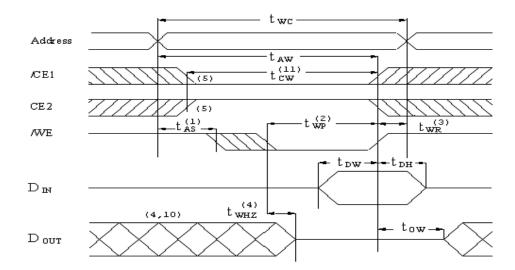
NOTES:

- 1. /WE is high in read Cycle.
- 2. Device is continuously selected when /CE1 = VIL and CE2=VIH.
- 3. Address valid prior to or coincident with /CE1 transition low and /or CE2 transition high.
- 4. /OE = VIL.
- 5. Transition is measured ±500mV from steady state with CL = 5pF as shown in Figure 1B. The parameter is guaranteed but not 100% tested.

AC ELECTRICAL CHARACTERISTICS (T_A = 0°C ~70°C; V_{CC}=5.0V)

< WRITE CYCLE >

JEDEC	Symbol	Description	-5	55	-7	70	Unit
Name	Symbol	Description	MIN	MAX	MIN	MAX	Oiii
t _{AVAX}	t _{WC}	Write Cycle Time	55		70		ns
t _{E1LWH}	t _{CW}	Chip Select to End of Write	45		60		ns

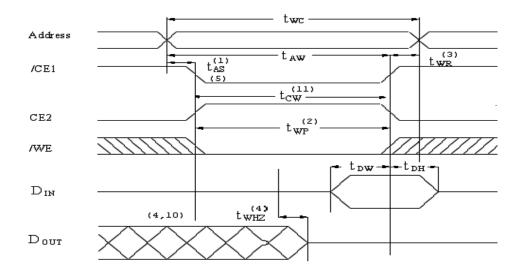

128K Word By 8 Bit

CS18LV10245

t _{AVWL}	t _{AS}	Address Setup Time	0		0		ns
t _{AVWH}	t _{AW}	Address Valid to End of Write	45		60		ns
t _{WLWH}	t _{WP}	Write Pulse Width	40		50		ns
t _{WHAX}	t_{WR}	Write Recovery Time	0		0		ns
t _{WLQZ}	t _{WHZ} ⁽¹⁰⁾	Write to Output in High Z		20		20	ns
t _{DVWH}	t_{DW}	Data to Write Time Overlap	25		30		ns
t _{WHDX}	t _{DH}	Data Hold for Write End	0		0		ns
t _{GHQZ}	t _{OHZ} ⁽¹⁰⁾	Output Disable to Output in High Z	0	30	0	30	ns
t _{WHOX}	t _{OW} ⁽¹⁰⁾	End of Write to Output Active	5		5		ns

SWITCHING WAVEFORMS (WRITE CYCLE)

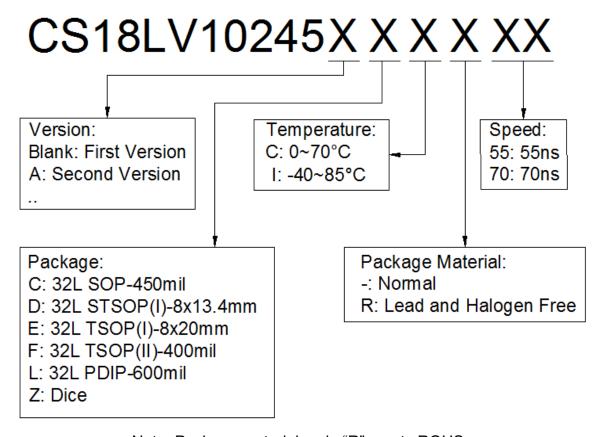
WRITE CYCLE1 (Write Enable Controlled)



128K Word By 8 Bit

CS18LV10245

WRITE CYCLE2 (Chip Enable Controlled)

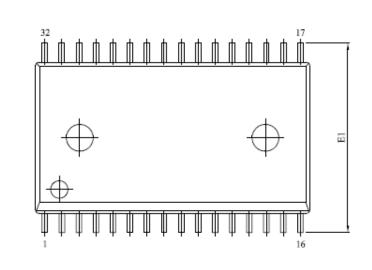

NOTES:

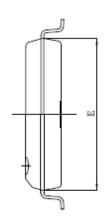
- 1. TAS is measured from the address valid to the beginning of write.
- 2. The internal write time of the memory is defined by the overlap of /CE1 and CE2 active and /WE low. All signals must be active to initiate a write and any one signal can terminate a write by going inactive. The data input setup and hold timing should be referenced to the second transition edge of the signal that terminates the write.
- 3. TWR is measured from the earlier of /CE1 or /WE going high or CE2 going low at the end of write cycle.
- 4. During this period, DQ pins are in the output state so that the input signals of opposite phase to the outputs must not be applied.
- 5. If the /CE1 low transition or CE2 high transition occurs simultaneously with the /WE low transitions or after the /WE transition, output remain in a high impedance state.
- 6. /OE is continuously low (/OE = V_{IL}).
- 7. DOUT is the same phase of write data of this write cycle.
- 8. DOUT is the read data of next address.
- 9. If /CE1 is low and CE2 is high during this period, DQ pins are in the output state. Then the data input signals of opposite phase to the outputs must not be applied to them.
- 10. Transition is measured ±500mV from steady state with CL = 5pF as shown in Figure 1B. The parameter is guaranteed but not 100% tested.
- 11. TCW is measured from the later of /CE1 going low or CE2 going high to the end of write.

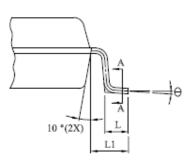
128K Word By 8 Bit

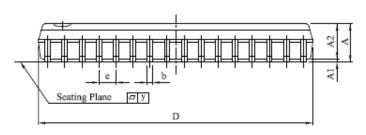
CS18LV10245

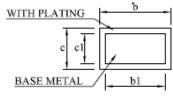
ORDER INFORMATION


Note: Package material code "R" meets ROHS


128K Word By 8 Bit

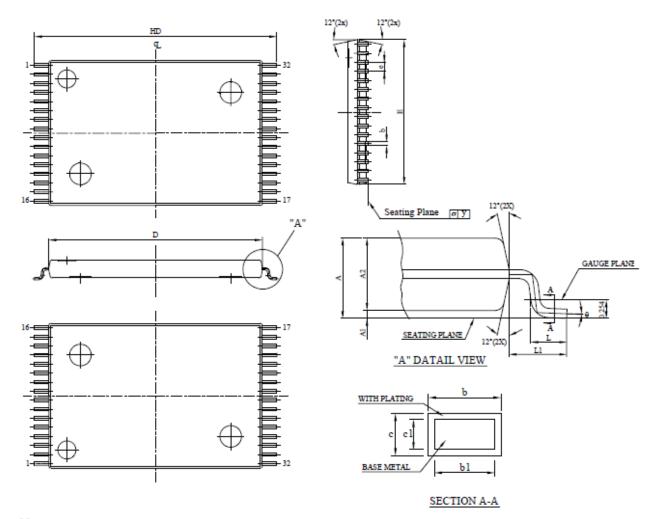

CS18LV10245


PACKAGE OUTLINE


32L SOP-450mil

SECTION A-A

Note: Plating thickness spec: 0.3 mil ~ 0.8 mil.

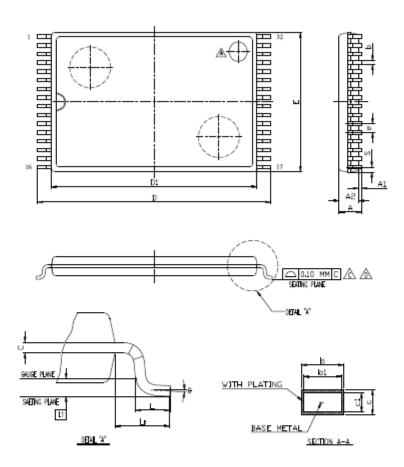

		2	<u>F</u>	0 1 010 1												
UNIT	MBOL	A	A 1	A2	ъ	b1	С	c1	D	Е	E1	е	L	L1	у	Θ
	Min.	2.645	0.102	2.540	0.35	0.35	0.15	0.15	20.320	11.176	13.792	1.118	0.584	1.194	-	0°
mm	Nom.	2.821	0.229	2.680	_	-	_	_	20.447	11.303	14.097	1.270	0.834	1.397	1	_
	Max.	2.997	0.356	2.820	0.50	0.46	0.32	0.28	20.574	11.430	14.402	1.422	1.084	1.600	0.1	10°
	Min.	0.104	0.004	0.1000	0.014	0.014	0.006	0.006	0.800	0.440	0.543	0.044	0.023	0.047	-	0°
inch	Nom.	0.111	0.009	0.1055	ı	_	_	_	0.805	0.445	0.555	0.050	0.033	0.055	-	_
	Max.	0.118	0.014	0.1110	0.020	0.018	0.012	0.011	0.810	0.450	0.567	0.056	0.043	0.063	0.004	10°

128K Word By 8 Bit

CS18LV10245

32L STSOP(I)-8x13.4mm (option 1)

Note: Plating thickness spec: 0.3 mil ~ 0.8 mil.


		,														
UNIT	MBOL	A	Al	A2	ь	bl	U	cl	D	Е	e	HD	L	Ll	y	Θ
	Min.	1.00	0.05	0.95	0.17	0.17	0.10	0.10	11.70	7.90	0.40	13.20	0.40	0.70	ı	0°
mm	Nom.	1.10	0.10	1.00	0.22	0.20	ı	-	11.80	8.00	0.50	13.40	0.50	0.80	-	-
	Max.	1.20	0.15	1.05	0.27	0.23	0.21	0.16	11.90	8.10	0.60	13.60	0.70	0.90	0.1	8°
	Min.	0.0393	0.002	0.037	0.007	0.007	0.004	0.004	0.461	0.311	0.016	0.520	0.0157	0.0275	ı	0°
inch	Nom.	0.0433	0.004	0.039	0.009	0.008	1	-	0.465	0.315	0.020	0.528	0.0197	0.0315	-	-
	Max.	0.0473	0.006	0.041	0.011	0.009	0.008	0.006	0.469	0.319	0.024	0.536	0.0277	0.0355	0.004	8°

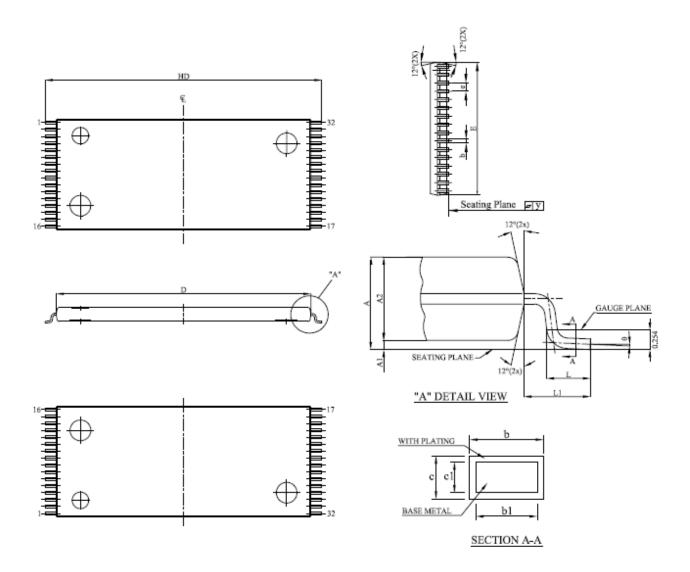
128K Word By 8 Bit

CS18LV10245

32L STSOP(I)-8x13.4mm (option 2)

Note: Dimensions D1 and E do not include mold protrusions.

D1 and E are maximum plastic body size dimensions including mold mismatch.

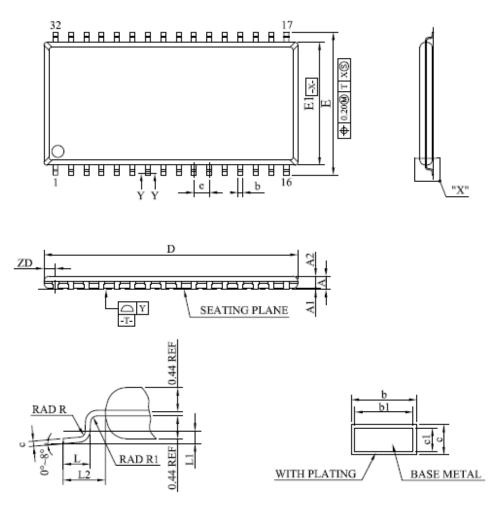

UNIT	MBOL	A	Al	A2	ь	bl	С	cl	E	e	D	Dl	L	Ll	LE	s	Θ
	Min.		0.05	0.90	0.17	0.17	0.10	0.10	7.90		13.20	11.70	0.30		0.675		0
mm	Nom.			1.00	0.22	0.20	-	1	8.00	0.50 TYP.	13.40	11.80	0.50	0.25 BSC		0.278 TYP.	3
	Max.	1.20		1.05	0.27	0.23	0.21	0.16	8.10		13.60	11.90	0.70	200		****	5
	Min.		0.002	0.035	0.007	0.007	0.004	0.004	0.311		0.520	0.461	0.012		0.027		0
inch	Nom.			0.039	0.009	0.008	-	1	0.315	0.020 TYP.	0.528	0.465	0.020	0.010 BSC		0.0109 TYP.	3
	Max.	0.047		0.041	0.011	0.009	0.008	0.006	0.319	1	0.535	0.469	0.028	230			5

128K Word By 8 Bit

CS18LV10245

32L TSOP(I)-8x20mm

Note: Plating thickness spec: 0.3 mil ~ 0.8 mil.


UNIT	MBOL	A	A 1	A2	b	b 1	с	c1	D	Е	е	HD	L	L1	у	Θ
	Min.	1.00	0.05	0.95	0.17	0.17	0.10	0.10	18.30	7.90	0.40	19.80	0.40	0.70	-	0°
mm	Nom.	1.10	0.10	1.00	0.22	0.20	-	_	18.40	8.00	0.50	20.00	0.50	0.80	_	_
	Max.	1.20	0.15	1.05	0.27	0.23	0.21	0.16	18.50	8.10	0.60	20.20	0.70	0.90	0.1	8°
	Min.	0.0393	0.002	0.037	0.007	0.007	0.004	0.004	0.720	0.311	0.016	0.779	0.0157	0.0275	1	0°
inch	Nom.	0.0433	0.004	0.039	0.009	0.008	ı	_	0.724	0.315	0.020	0.787	0.0197	0.0315	-	-
	Max.	0.0473	0.006	0.041	0.011	0.009	0.008	0.006	0.728	0.319	0.024	0.795	0.0277	0.0355	0.004	8°

128K Word By 8 Bit

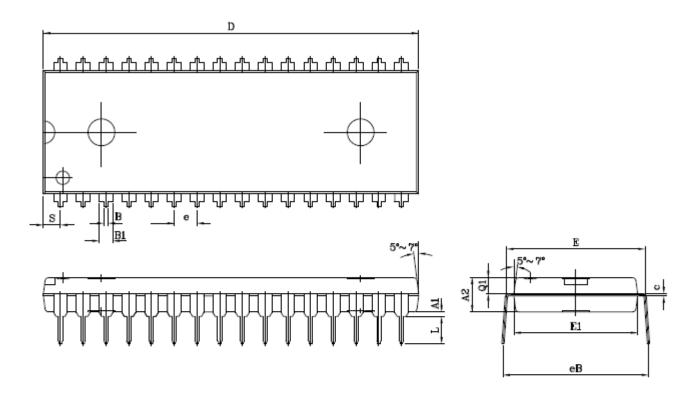
CS18LV10245

32L TSOP2-400mil

DETAIL "X"

SECTION Y-Y

Note: Plating thickness spec: 0.3 mil ~ 0.8 mil.


UNIT	MBOL	A	A 1	A2	ъ	b 1	с	c1	D	Е	El	e	L	Ll	L2	R	R1	ZD	Y
	Min.	_	0.05	0.95	0.30	0.30	0.12	0.10	20.82	11.56	10.03		0.40			0.12	0.12		_
mm	Nom.	_	0.10	1.00	_	0.40	_	0.127	20.95	11.76	10.16	1.27 bsc	0.50	0.25 bsc	0.8 ref	_	_	0.95 ref	_
	Max.	1.20	0.15	1.05	0.52	0.45	0.21	0.16	21.08	11.96	10.29		0.60	000	101	0.25	_	101	0.10
	Min.	_	0.002	0.037	0.012	0.012	0.005	0.004	0.820	0.455			0.016			0.005	0.005		_
inch	Nom.	_	0.004	0.039	_	0.016	_	0.005	0.825	0.463	0.400	0.050 bsc	0.020	0.010 bsc	0.031 ref	_	_	0.037 ref	_
	Max.	0.047	0.006	0.042	0.020	0.018	0.008	0.006	0.830	0.471	0.405		0.024	000		0.010	_	101	0.004

128K Word By 8 Bit

CS18LV10245

32L PDIP-600mil

Note: Plating thickness spec: 0.3 mil ~ 0.8 mil.

UNIT	MBOL	A1	A2	В	B1	c	D	Е	E1	e	eВ	L	s	Q1
	Min.	0.254	3.785	0.330	1.143				13.716		16.002	3.048	1.651	1.651
mm	Nom.	_	3.912	0.457	1.270	0.254	41.910	15.240	13.818	2.540 (TYP)	16.510	3.302	1.905	1.778
	Max.	_	4.039	0.584	1.397				13.920		17.018	3.556	2.159	1.905
	Min.	0.010	0.149	0.013	0.045	0.006	1.645	0.590	0.540		0.630	0.120	0.065	0.065
inch	Nom.	_	0.154	0.018	0.050	0.010	1.650	0.600	0.544	0.100 (TYP)	0.650	0.130	0.075	0.070
	Max.	_	0.159	0.023	0.055	0.014	1.655	0.610	0.548	, , ,	0.670	0.140	0.085	0.075