

CS18FS8192W CS16FS8192W

Cover \$	Sheet and	Revision S	tatus	
版別 (Rev.)	DCC No	生效日 (Eff. Date)	變更說明 (Change Description)	發行人 (Originator)
1.0 2.0		, i	New issue Revise "Chiplus reserves the right to	Hank Lin Hank Lin
2.0			change product or specification without notice" to "Chiplus reserves the right to change product or specification after approving by customer ."	
3.0	20240007	May. 23, 2024	Delete 5V products	Hank Lin
4.0	20240018	000.22,2021	Corrected the minimum value of tAS and tWR from 0ns to 1.5ns	Hank Lin

CS18FS8192W CS16FS8192W

Cover Sheet and Revision Status	i
GENERAL DESCRIPTION	1
FEATURES	1
Order Information	2
PIN CONFIGURATIONS	3
FUNCTIONAL BLOCK DIAGRAM	4
Recommended DC Operating Conditions*(T_A=0 to 70° C)	5
DC and Operating Characteristics*(T_A=0 to 70° C)	5
Capacitance*(T _A = 25°C, f= 1.0MHz)	6
Test Conditions	6
Functional Description (x8 Mode)	7
Functional Description (x16 Mode)	8
Data Retention Characteristics*(T _A =0 to 70° C)	8
Data Retention Wave form	9
Read Cycle	9
Write Cycle	10
Timing Diagram	11
Package outline dimensions	15

CS18FS8192W CS16FS8192W

GENERAL DESCRIPTION

The CS16FS8192Wand CS18FS8192W are a 8,388,608-bit high-speed Static Random Access Memory organized as 512K(1M) words by 16(8) bits. The CS16FS8192W(CS18FS8192W) uses 16(8) common input and output lines and have an output enable pin which operates faster than address access time at read cycle, And CS16FS8192Wallows that lower and upper byte access by data byte control(\overline{UB} , \overline{LB}). The device is fabricated using advanced CMOS process,6-TR based cell technology and designed for high-speed circuit technology. It is particularly well suited for use in high-density high-speed system applications. The CS16FS8192Wand CS18FS8192W are packaged in a 400mil 44-pin TSOP2 and 48FBGA.

FEATURES

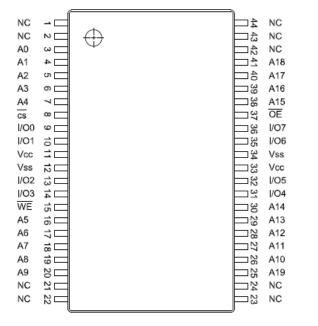
- Fast Access Time 8,10,12,15ns(Max)
- CMOS Low Power Dissipation Standby (TTL): 25mA (Max.) (CMOS): 15mA (Max.) Operating: 80mA (8ns, Max..) : 70mA(10ns ,Max.)
- Wide range (1.65V~3.6V) of Power Supply
- TTL Compatible inputs and Outputs
- Fully Static Operation, No Clock or Refresh required
- Three State Outputs
- Data Byte Control(x16 Mode)
 - \overline{LB} : I/O₀~I/O₇, \overline{UB} : I/O₈~I/O₁₅
- Standard 44TSOP2 and 48FBGA Package Pin Configuration for 1Mx8
- Standard 44TSOP2 and 48FBGA Package Pin Configuration for 512Kx16
- Operating in Commercial and Industrial Temperature range.

CS18FS8192W CS16FS8192W

Order Information

Density	Ora	Dort Number	Part Number Speed		Dookogo	Tomp	
Density	Org.	Fait Number	Vcc (V)	t _{AA} (ns)	t _{OE} (ns)	Package	Temp.
			3.3	8	4	44 TSOP2	
		CS16FS8192WGC(I)- 08*	2.5	10	5	44 TSOP2	
		00	1.8	12	6	44 TSOP2	
				48 FBGA			
		CS16FS8192WHC(I)- 08*	2.5	10	5	48 FBGA	
0146	54014.40		1.8	12	6	48 FBGA	C : Commercial
8Mb	512Kx16	00405004000400040	3.3	10	5	44 TSOP2	I : Industrial
		CS16FS8192WGC(I)- 10*	2.5	10	5	44 TSOP2	
		10	1.8	12	6	44 TSOP2	
			3.3	10	5	48 FBGA	
		CS16FS8192WHC(I)- 10*	2.5	10	5	48 FBGA	
		IU	1.8	12	6	48 FBGA	

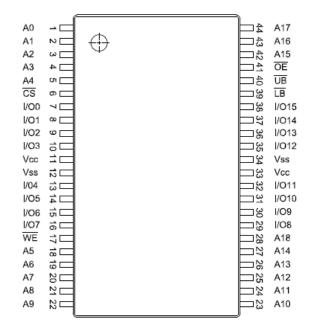
Density	Ora	Part Number		Speed		Dookogo	Tomp	
Density	Org.	Fait Nulliper	Vcc(V)	t _{AA} (ns)	toe(ns)	Package	Temp.	
			3.3	8	4	44 TSOP2		
		CS18FS8192WGC(I)-08*	2.5	10	5	44 TSOP2		
			1.8	12	6	44 TSOP2		
			3.3	8	4	48 FBGA		
		CS18FS8192WHC(I)-08*	2.5	10	5	48 FBGA		
8Mb	1Mx8		1.8	12	6	48 FBGA	C : Commercial	
UIVIO	ΠΝΙΧΟ		3.3	10	5	44 TSOP2	I :Industrial	
		CS18FS8192WGC(I)-10*	2.5	10	5	44 TSOP2		
			1.8	12	6	44 TSOP2		
			3.3	10	5	48 FBGA		
		CS18FS8192WHC(I)-10*	2.5	10	5	48 FBGA		
			1.8	12	6	48 FBGA		


*means max. speed

CS18FS8192W CS16FS8192W

PIN CONFIGURATIONS

44TSOP2-400mil



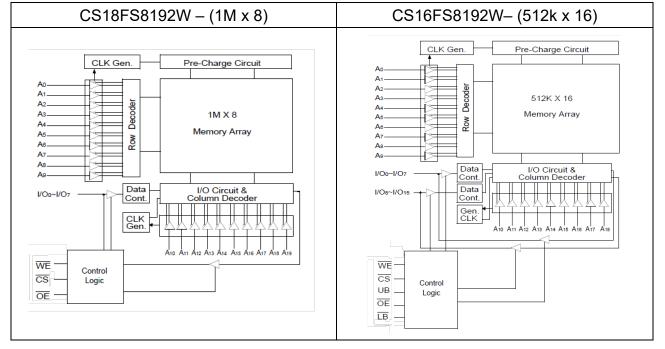
CS18FS8192(3/5/W)- (1M x 8)

6x8mm mini-BGA with ball pitch 0.75mm

	1	2	3	4	5	6
Α	NC	OE	A0	A1	A2	NC
В	NC	NC	A3	A4	CS	100
С	NC	NC	A5	A6	101	102
D	Vss	NC	A17	A7	103	Vcc
Ε	Vcc	NC	NC	A16	104	Vss
F	NC	NC	A14	A15	105	106
G	NC	NC	A12	A13	WE	107
Н	A18	A8	A9	A10	A11	A19

CS18FS8192W – (1M x 8) 48ball mini-BGA

CS16FS8192(3/5/W)- (512k x 16)


	1	2	3	4	5	6
Α	ĽΒ	Œ	A0	A1	A2	NC
В	108	UB	A3	A4	CS	100
С	109	IO10	A5	A6	101	102
D	Vss	IO11	A17	A7	103	Vcc
Е	Vcc	IO12	NC	A16	104	Vss
F	IO14	IO13	A14	A15	105	106
G	IO15	NC	A12	A13	WE	107
Н	A18	A8	A9	A10	A11	NC

CS16FS8192W– (512k x 16) 48ball mini-BGA

CS18FS8192W CS16FS8192W

FUNCTIONAL BLOCK DIAGRAM

Absolute Maximum Ratings*

Para	meter	Symbol	Rating	Unit	
Voltage on Any Pin	3.3V Product	Vin, Vout	-0.5 to Vcc+0.5V	V	
Relative to Vss	Wide Vcc** Product	Vin, VOUI		v	
Voltage on Vcc	3.3V Product		-0.5 to 4.0		
Supply Relative to	Wide Vcc** Product	Vin, Vout	-0.5 to 4.0	V	
Vss			-0.3 10 4.0		
Power Dissipation		PD	1.0	W	
Storage Temperature		Tstg	-65 to 150	°C	
Operating Temperatur	e Commercial	TA	0 to 70	°C	
Industrial		TA	-40 to 85	°C	

*Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the

device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operating sections of this specification is not implied.

Exposure to absolute maximum rating conditions for extended periods may affect reliability.

**Wide VCC Range is 1.65V~3.6V

Recommended DC Operating Conditions*(T_A=0 to 70° C)

Parameter	Operating Vcc(V)	Symbol	Min.	Тур.	Max.	Unit
	3.3	Vcc	3.0	3.3	3.6	
Supply Voltage	Wide 2.4~3.6	Vcc	2.4	2.5/3.3	3.6	
	Wide 1.65~2.2	Vcc	1.65	1.8	2.2	
Ground		Vss	0	0	0	V
	3.3	Vін	2.0	-	Vcc+0.5	
Input High Voltage	Wide 2.4~3.6	Vін	2.0	-	Vcc+0.3	
	Wide 1.65~2.2	Vih	1.4	-	V _{CC} +0.2	
	3.3	VIL	-0.3	-	0.8	
Input Low Voltage	Wide 2.4~3.6	VIL	-0.3	-	0.7	
	Wide 1.65~2.2	VIL	-0.2	-	0.4	

*The above parameters are also guaranteed for industrial temperature range.

DC and Operating Characteristics*(T_A=0 to 70° C)

Parameter	Symbol	Test Conditions		Min	Max	Unit
Input Leakage Current	ILI	$V_{IN}=V_{SS}$ to V_{CC}		-2	2	uA
Output Leakage Current**	Ilo	$\overline{CS} = V_{IH} \text{ or } \overline{OE} = V_{IH} \text{ or } \overline{WE} = V_{IL}$ Vout=Vss to Vcc		-2	2	uA
Operating Current**	lcc	Min.Cycle,100% Duty \overline{CS} =V _{IL} , V _{IN} =V _{IH} or V _{IL} ,I _{OUT} = 0mA	8ns 10ns 12ns 15ns	-	80 70 65 60	mA
Standby	Isb	Min. Cycle, $\overline{CS} = V_{IH}$		-	25	
Standby Current	ISB1	f=0MHz, \overline{CS} ≥V _{CC} -0.2V V _{IN} ≥V _{CC} -0.2V or V _{in} ≦0.2V		-	15	mA
Output Low Voltage	Vol	V _{CC} =3.0V, I _{OL} =8mA, 3.3V Product & W V _{CC} ** Product	/ide	-	0.4	V

Rev. 4.0

CS18FS8192W CS16FS8192W

Level		Vcc=2.4V, IoL=1mA, Wide Vcc** Product	-	0.4	
		V_{CC} =1.65V, I_{OL} =0.1mA, Wide V_{CC} ** Product	-	0.2	
Output High		V _{CC} =3.0V, I _{OH} = -4mA, 3.3V Product & Wide V _{CC} ** Product	2.4	-	
Voltage	Vон	Vcc=2.4V, IoH= -1mA, Wide Vcc** Product	1.8	-	V
Level		Vcc=1.65V, Iон= -0.1mA, Wide Vcc** Product	1.4	-	

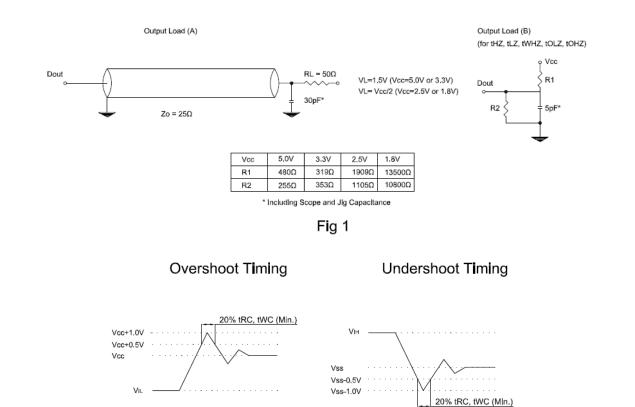
*The above parameters are also guarantee for industrial temperature range.

**Wide V_{CC} Range is $1.65V \thicksim 3.6V$

Capacitance*(T_A= 25℃, f= 1.0MHz)

Item	Symbol	Test Conditions	TYP	Max	Unit
Input/ Output Capacitance	Cı/o	V _{I/O} =0V	-	8	рF
Input Capacitance	CIN	V _{IN} =0V	-	6	pF

*Capacitance is sampled and not 100% tested.


Test Conditions*

Parameter	Value	
	0 to 3.0V (Vcc=3.3V)	
Input/ Output Capacitance	0 to 2.5V (Vcc=2.5V)	
	0 to 1.8V (Vcc=1.8V)	
Input Rise and Fall Time	1V/1ns	
Input and Output Timing Deference Lougle	1.5V (Vcc=3.3V)	
Input and Output Timing Reference Levels	1/2V _{CC} (V _{CC} = 1.8V or 2.5V)	
Output Load	See Fig. 1	

*The above parameters are also guaranteed for industrial temperature range.

CS18FS8192W CS16FS8192W

Functional Description (x8 Mode)

\overline{CS}	WE	\overline{OE}	Mode	I/O Pin	Supply Current
Н	Х	X*	Not Select	High-Z	ISB,ISB1
L	Н	Н	Output Disable	High-Z	lcc
L	Н	L	Read	Dout	lcc
L	L	Х	Write	Din	lcc

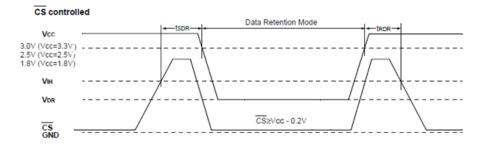
*X means don't care

CS18FS8192W CS16FS8192W

Functional Description (x16 Mode)

\overline{CS}	\overline{CS} \overline{WE} \overline{OE} \overline{LB} ** \overline{U}		\overline{IR} **	\overline{UB} **	Mode	I/O I	Pin	Supply	
CD	11 L		LD	СЪ	mede	I/O ₀ ~I/O ₇	I/O ₈ ~I/O ₁₅	Current	
Н	Х	Х*	Х	Х	Not Select	High-Z	High-Z	Isb, Isb1	
L	Н	Н	Х	Х	Output	Lliah 7	High 7	laa	
L	Х	Х	Н	Н	Disable	High-Z	High-Z	lcc	
			L	Н		Dout	High-Z		
L	Н	L	Н	L	Read	High-Z	Dout	lcc	
			L	L		Dout	Dout		
			L	Н		Din	High-Z		
L	L	Х	Н	L	Write	High-Z	Din	lcc	
			L	L		D _{IN}	DIN		

*X means don't care


Data Retention Characteristics*($T_A=0$ to $70^{\circ}C$)

Parameter	Product	Operating V _{CC} (V)	Symbol	Test Condition	Min.	Тур.	Max.	Unit
Vcc for	Wide 2.4V~3.6V	2.5/3.3		<u>CS</u> ≥V _{CC} -	2.0	-	3.6	V
Data Retention	Wide 1.65V~2.2V	1.8	Vdr	0.2V	1.5	-	3.6	V
Data Retention Current	Wide 2.4V~3.6V	2.5/3.3		$V_{CC}=2.0V$ $\overline{CS} ≥V_{CC} - 0.2V$ $V_{IN} ≥ V_{CC} - 0.2V$ or $V_{IN} \le 0.2V$			15	
	Wide 1.65V~2.2V	1.8	IDR	Vcc=1.5V, <u>CS</u> ≥Vcc - 0.2V, VIN≥Vcc- 0.2V or VIN≤0.2V			15	mA
Data Re	etention Set-Up	tsdr	See Data	0	-	-	nS	
F	Recovery Time		t _{RDR}	Retention Wave form (below)	5	-	-	mS

Rev. 4.0

Data Retention Wave form

Read Cycle*

Parameter	Symbol	Symbol 8ns		10)ns	12	2ns	15	Unit	
Farameter	Symbol	Min	Max	Min	Max	Min	Max	Min	Max	Unit
Read Cycle Time	t _{RC}	8	-	10	-	12	-	15	-	ns
Address Access Time	taa	-	8	-	10	-	12	-	15	ns
Chip Select to Output	tco	-	8	-	10	-	12	-	15	ns
Output Enable to Valid Output	toe	-	4	-	5	-	6	-	7	ns
\overline{UB} , \overline{LB} Access Time**	t _{BA}	-	4	I	5	-	6	-	7	ns
Chip Enable to Low-Z Output	t∟z	3	-	3	-	3	-	3	-	ns
Output Enable to Low-Z Output	tolz	0	-	0	-	0	-	0	-	ns
\overline{UB} , \overline{LB} Enable to Low- Z Output**	t _{BLZ}	0	-	0	-	0	-	0	-	ns
Chip Disable to High-Z Output	tнz	0	4	0	5	0	6	0	7	ns
Output Disable to High- Z Output	tонz	0	4	0	5	0	6	0	7	ns
\overline{UB} , \overline{LB} Disable to High-Z Output**	tвнz	0	4	0	5	0	6	0	7	ns
Output Hold from Address Change	tон	3	-	3	-	3	-	3	-	ns

9

CS18FS8192W CS16FS8192W

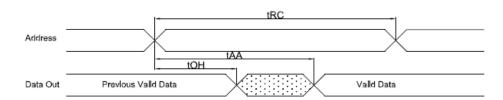
Chip Selection Power Up Time	tPU	0	-	0	-	0	-	0	-	ns
Chip Selection Power Down Time	t _{PD}	-	8	-	10	-	12	-	15	ns

*The above parameters are also guaranteed for industrial temperature range.

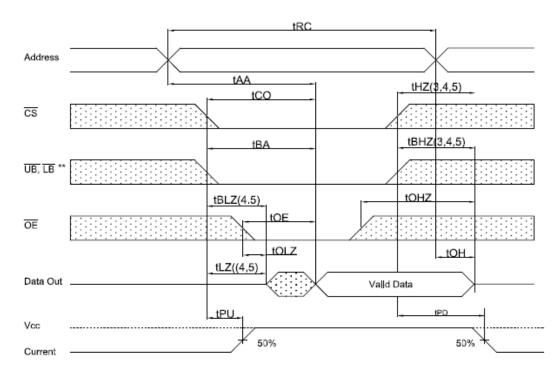
Write Cycle*

Deremeter	Symbol	8	ns	10)ns	12	2ns	15ns		Unit	
Parameter	Symbol	Min	Max	Min	Max	Min	Max	Min	Max	Unit	
Write Cycle Time	twc	8	I	10	-	12	-	15	-	ns	
Chip Select to End of Write	t _{cw}	6	-	7	-	9	-	12	-	ns	
Address Set-up Time	tas	1.5	-	1.5	-	1.5	-	1.5	-	ns	
Address Valid to End of Write	taw	6	-	7	-	9	-	12	-	ns	
Write Pulse Width(\overline{OE} High)	twp	6	-	7	-	9	-	12	-	ns	
Write Pulse Width(\overline{OE} Low)	twP1	8	-	10	-	12	-	15	-	ns	
\overline{UB} , \overline{LB} Valid to End of Write**	tвw	6	-	7	-	9	-	12	-	ns	
Write Recovery Time	t _{WR}	1.5	-	1.5	-	1.5	-	1.5	-	ns	
Write to Output High-Z	twнz	0	4	0	5	0	6	0	7	ns	
Data to Write Time Overlap	tow	4	-	5	-	7		8	-	ns	
Data Hold from Write Time	t _{DH}	0	-	0	-	0	-	0	-	ns	
End of Write to Output Low-Z	tow	3	-	3	-	3	-	3	-	ns	

*The above parameters are also guaranteed for industrial temperature range.


10

CS18FS8192W CS16FS8192W


Timing Diagram

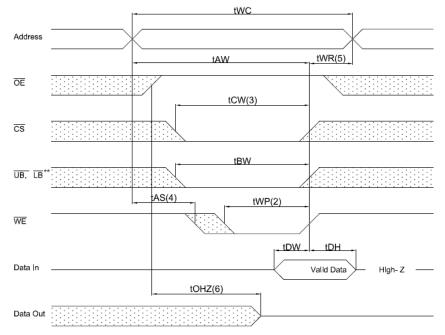
Timing Waveform of Read Cycle (1) (Address Controlled, $\overline{CS} = \overline{OE} = V_{IL}$, $\overline{WE} = V_{IH}$, \overline{UB} , $\overline{LB} = V_{IL} **$)

** Those parameters are applied for x16 mode only.

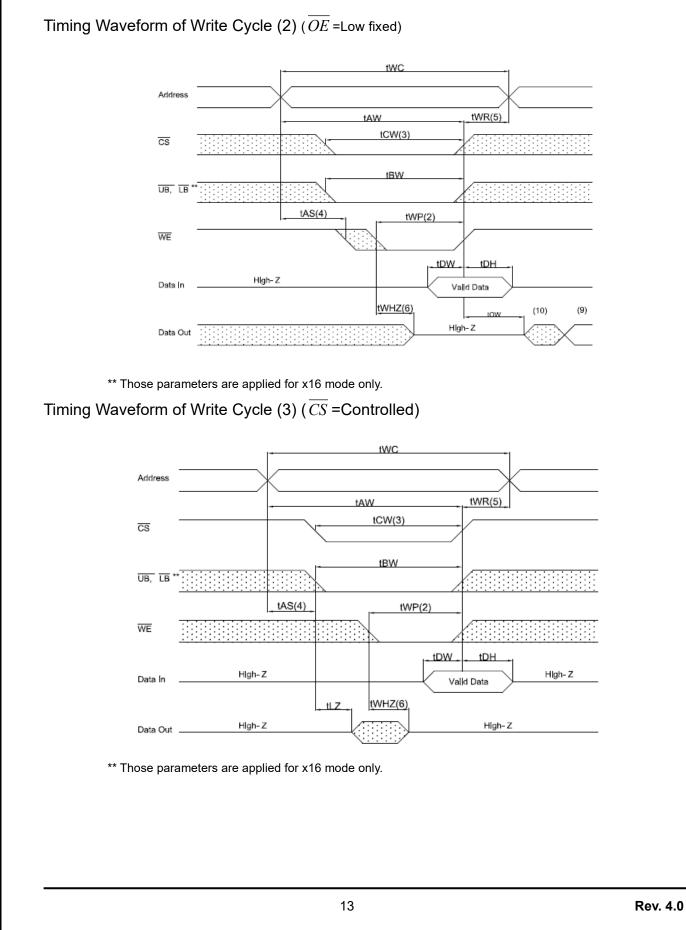
Timing Waveform of Read Cycle (2) (\overline{WE} =VIH)

NOTES (Read Cycle)

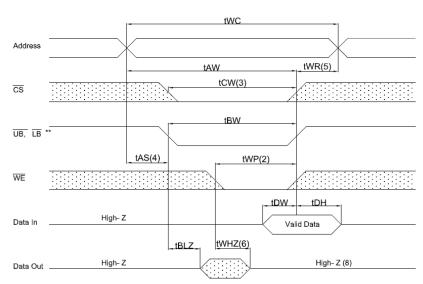
- 1. WE is high for read cycle
- 2. All read cycle timing is referenced from the last valid address to the first transition address.
- t_{HZ} and t_{OHZ} are defined as the time at which the outputs achieve the open circuit condition and are not referenced to V_{OH} or V_{OL} levels.
- 4. At any given temperature and voltage condition, t_{HZ} (Max.) is less than t_{LZ} (Min.) both for a given device and from device to device.
- 5. Transition is measured ±200mV from steady state voltage with Load (B). This parameter is sampled and not 100% tested.


Rev. 4.0

Rev. 4.0


- 6. Device is continuously selected with $CS = V_{IL}$.
- 7. Address valid prior to coincident with \overline{CS} transition low.
- 8. For common I/O applications, minimization or elimination of bus contention conditions is necessary during read and write cycle.
- ** Those parameters are applied for x16 mode only.

Timing Waveform of Write Cycle (1) (\overline{OE} Clock)

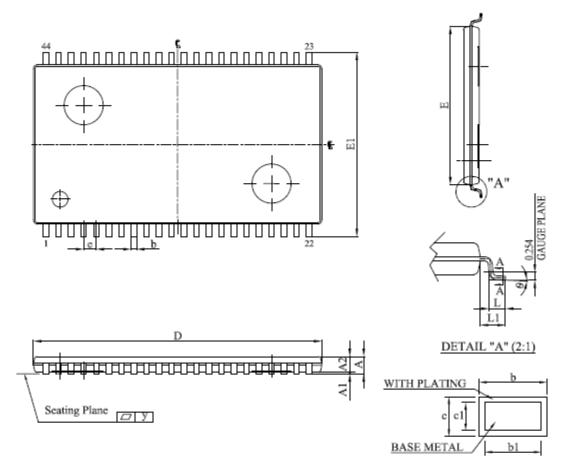


** Those parameters are applied for x16 mode only.

Timing Waveform of Write Cycle (4) (\overline{UB} , \overline{LB} Controlled)

NOTES (Write Cycle)

- 1. All write cycle timing is referenced from the last valid address to the first transition address.
- 2. A write occurs during the overlap of a low \overline{CS} , \overline{WE} , \overline{LB} and \overline{UB} . A write begins at the latest transition \overline{CS} going low and \overline{WE} going low;

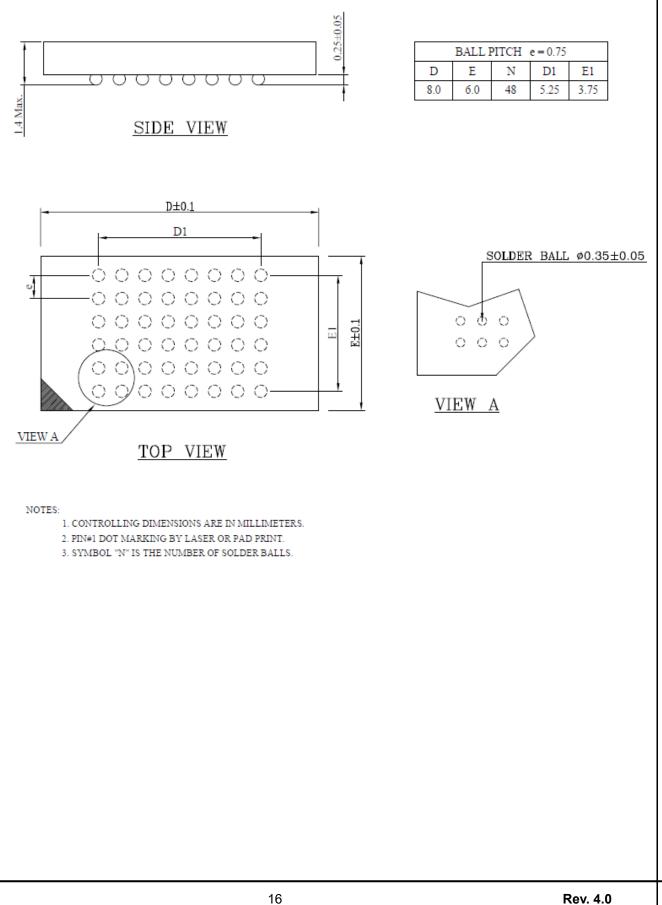

A write ends at the earliest transition CS going high or \overline{WE} going high. twp is measured from the beginning of write to the end of write.

- 3. t_{CW} is measured from the later of CS going low to end of write.
- 4. t_{AS} is measured from the address valid to the beginning of write.
- 5. \overline{WE} is measured from the end of write to the address change. two applied in case a write ends as \overline{CS} or \overline{WE} going high.
- 6. If OE, CS and WE are in the Read Mode during this period, the I/O pins are in the output low-Z state. Inputs of opposite phase of the output must not be applied because bus contention can occur.
- 7. For common I/O applications, minimization or elimination of bus contention conditions is necessary during read and write cycle.
- 8. If \overline{CS} goes low simultaneously with \overline{WE} going or after WE going low, the outputs remain high impedance state.
- 9. D_{OUT} is the read data of the new address.
- 10. When CS is low : I/O pins are in the output state. The input signals in the opposite phase leading to the output should not be applied.
- ** Those parameters are applied for x16 mode only

Package outline dimensions

44L-TSOP2-400mil

SECTION A-A


Note: Plating thickness spec : 0.3 mil ~ 0.8 mil.

UNIT	MBOL	А	Al	A2	b	b 1	с	cl	D	Е	El	c	L	L1	У	Θ
	Min.	1.00	0.05	0.95	0.30	0.30	0.12	0.12	18.31	10.06	11.56	0.70	0.40	0.70	Ι	0°
mm	Nom.	1.10	0.10	1.00	-	-	-	-	18.41	10.16	11.76	0.80	0.50	0.80	Ι	-
	Max.	1.20	0.15	1.05	0.45	0.40	0.21	0.16	18.51	10.26	11.96	0.90	0.60	0.90	0.1	8°
	Min.	0.0393	0.002	0.037	0.012	0.012	0.005	0.005	0.721	0.396	0.455	0.0275	0.0157	0.0275	Ι	0°
inch	Nom.	0.0433	0.004	0.039	-	-	-	-	0.725	0.400	0.463	0.0315	0.0197	0.0315	Ι	-
	Max.	0.0473	0.006	0.041	0.018	0.016	0.008	0.006	0.729	0.404	0.471	0.0355	0.0237	0.0355	0.004	8°

48ball mini-BGA-6x8mm (ball pitch: 0.75mm)

CS18FS8192W CS16FS8192W

